List of Publications

Publication Reporting

If you have recently published any work that includes data acquired on UC Davis NMR/MRI instrumentation, we ask that you please report your work using the submission form below. This information is vital toward assessing the general health of the NMR Facility as well as ensuring that we are eligible for internal and external funding opportunities.  Please report journal articles, reviews, book chapters, posters or presentations at meetings, patents, and anything else you think we should know about.  

Publication Reporting Form

Recent Publications Utilizing the UC Davis NMR Facility

 

2024/2025 Fiscal Year

[1]        M. R. Bull et al., “Probing the high-pressure densification of amorphous silica nanomaterials using SBA-15: An investigation into the paradoxical nature of the first sharp diffraction peak,” Journal of Non-Crystalline Solids, vol. 656, p. 123448, May 2025, doi: 10.1016/j.jnoncrysol.2025.123448.

[2]        S. Chuang, P. Yu, and S. Sen, “Dynamic and thermodynamic behavior of supercooled Na–Ba metaphosphate liquids: Role of modifier cation ordering,” J Am Ceram Soc., vol. 108, no. 4, p. e20313, Apr. 2025, doi: 10.1111/jace.20313.

[3]        S. Soyer-Uzun, P. Yu, F. K. Öner, and S. Sen, “Mechanistic Understanding of Superior Methylene Blue Adsorption Capacity in a Novel g-C3 N4 Modified Amorphous Na–Ca–Mg Silicate Adsorbent: Insights from Multinuclear Solid-State NMR Spectroscopy,” J. Phys. Chem. B, vol. 128, no. 50, pp. 12638–12650, Dec. 2024, doi: 10.1021/acs.jpcb.4c06514.

[4]        B. D. Fonda, M. Kato, Y. Li, and D. T. Murray, “Cryo‐ EM and solid state NMR together provide a more comprehensive structural investigation of protein fibrils,” Protein Science, vol. 33, no. 10, p. e5168, Oct. 2024, doi: 10.1002/pro.5168.

[5]        H. T. Warren, W. L. Chow, M. Chytil, K. Rasmussen, and D. E. Olson, “Identification of Psychoplastogenic Tropanes Lacking Muscarinic Activity,” J. Med. Chem., vol. 67, no. 14, pp. 12410–12427, Jul. 2024, doi: 10.1021/acs.jmedchem.4c01204.

[6]        B. D. Fonda and D. T. Murray, “The Potent PHL4 Transcription Factor Effector Domain Contains Significant Disorder,” Jul. 01, 2024, Biophysics. doi: 10.1101/2024.06.27.601048.

 

2023/2024 Fiscal Year

[1]        H. T. Warren, H. N. Saeger, R. J. Tombari, M. Chytil, K. Rasmussen, and David. E. Olson, “Psychoplastogenic DYRK1A Inhibitors with Therapeutic Effects Relevant to Alzheimer’s Disease,” J. Med. Chem., vol. 67, no. 9, pp. 6922–6937, May 2024, doi: 10.1021/acs.jmedchem.3c01696.

[2]        A. K. Hauble et al., “β-Phase Yb5 Sb3 H x  : Magnetic and Thermoelectric Properties Traversing from an Electride to a Semiconductor,” Inorg. Chem., vol. 63, no. 18, pp. 8109–8119, May 2024, doi: 10.1021/acs.inorgchem.4c00254.

[3]        T. H. L. Jahinge, M. K. Payne, D. K. Unruh, A. S. Jayasinghe, P. Yu, and T. Z. Forbes, “Characterization of Water Structure and Phase Behavior within Metal–Organic Nanotubes,” Langmuir, vol. 39, no. 51, pp. 18899–18908, Dec. 2023, doi: 10.1021/acs.langmuir.3c02786.

[4]        W. L. Chow, M. A. Gonzalez, A. A. Avanes, and D. E. Olson, “Rapid Synthesis of Psychoplastogenic Tropane Alkaloids,” JACS Au, vol. 3, no. 10, pp. 2703–2708, Oct. 2023, doi: 10.1021/jacsau.3c00472.

[5]        J. R. Tuck, L. E. Dunlap, and D. E. Olson, “Synthetic Strategies toward Lysergic Acid Diethylamide: Ergoline Synthesis via α-Arylation, Borrowing Hydrogen Alkylation, and C–H Insertion,” J. Org. Chem., vol. 88, no. 19, pp. 13712–13719, Oct. 2023, doi: 10.1021/acs.joc.3c01363.

 

2022/2023 Fiscal Year

[1]        B. Yuan, B. G. Aitken, D. C. Kaseman, P. Yu, and S. Sen, “Structure of molecule-rich chalcogenide glasses along the join P4Se3-As4Se3: Results from 77Se and 31P NMR and Raman spectroscopy,” Journal of Non-Crystalline Solids, vol. 613, p. 122359, Aug. 2023, doi: 10.1016/j.jnoncrysol.2023.122359.

[2]        P. Yu, J. W. Marshall, P. Sadek, and J. H. Walton, “Speciation of Phosphorus in Pet Foods by Solid-State31 P-MAS-NMR Spectroscopy,” J. Agric. Food Chem., vol. 71, no. 22, pp. 8602–8612, Jun. 2023, doi: 10.1021/acs.jafc.2c07339.

[3]        W. Zou et al., “London Dispersion Effects in a Distannene/Tristannane Equilibrium: Energies of their Interconversion and the Suppression of the Monomeric Stannylene Intermediate,” Angewandte Chemie, vol. 135, no. 22, p. e202301919, May 2023, doi: 10.1002/ange.202301919.

[4]        Y. Wittmer, K. M. Jami, R. K. Stowell, T. Le, I. Hung, and D. T. Murray, “Liquid Droplet Aging and Seeded Fibril Formation of the Cytotoxic Granule Associated RNA Binding Protein TIA1 Low Complexity Domain,” J. Am. Chem. Soc., vol. 145, no. 3, pp. 1580–1592, Jan. 2023, doi: 10.1021/jacs.2c08596.

[5]        K. Tiedge et al., “Comparative transcriptomics and metabolomics reveal specialized metabolite drought stress responses in switchgrass ( Panicum virgatum ),” New Phytologist, vol. 236, no. 4, pp. 1393–1408, Nov. 2022, doi: 10.1111/nph.18443.

[6]        G. Zhang, D. Favela, W. L. Chow, R. N. Iyer, A. J. Pell, and D. E. Olson, “Synthesis of Tertiary Amines through Extrusive Alkylation of Carbamates,” Org. Lett., vol. 24, no. 33, pp. 6208–6212, Aug. 2022, doi: 10.1021/acs.orglett.2c02516.

[7]        K. L. Mears et al., “Terpene dispersion energy donor ligands in borane complexes,” Chem. Commun., vol. 58, no. 71, pp. 9910–9913, 2022, doi: 10.1039/D2CC04203G.

 

2021/2022 Fiscal Year

[1]        C. R. Munson, Y. Gao, J. C. Mortimer, and D. T. Murray, “Solid-State Nuclear Magnetic Resonance as a Tool to Probe the Impact of Mechanical Preprocessing on the Structure and Arrangement of Plant Cell Wall Polymers,” Front. Plant Sci., vol. 12, p. 766506, Jan. 2022, doi: 10.3389/fpls.2021.766506.

[2]        N. Singh, A. Vik, D. B. Lybrand, C. Morisseau, and B. D. Hammock, “New Alkoxy- Analogues of Epoxyeicosatrienoic Acids Attenuate Cisplatin Nephrotoxicity In Vitro via Reduction of Mitochondrial Dysfunction, Oxidative Stress, Mitogen-Activated Protein Kinase Signaling, and Caspase Activation,” Chem. Res. Toxicol., vol. 34, no. 12, pp. 2579–2591, Dec. 2021, doi: 10.1021/acs.chemrestox.1c00347.

[3]        R. J. Tombari, J. R. Tuck, N. Yardeny, P. W. Gingrich, D. J. Tantillo, and D. E. Olson, “Calculated oxidation potentials predict reactivity in Baeyer–Mills reactions,” Org. Biomol. Chem., vol. 19, no. 35, pp. 7575–7580, 2021, doi: 10.1039/D1OB01450A.

[4]        Q. Zhu, J. C. Fettinger, and P. P. Power, “Hydrostannylation of carbon dioxide by a hydridostannylene molybdenum complex,” Dalton Trans., vol. 50, no. 36, pp. 12555–12562, 2021, doi: 10.1039/D1DT02473F.

 

2020/2021 Fiscal Year

[1]        J. D. Cope, K. A. Abellar, K. H. Bates, X. Fu, and T. B. Nguyen, “Aqueous Photochemistry of 2-Methyltetrol and Erythritol as Sources of Formic Acid and Acetic Acid in the Atmosphere,” ACS Earth Space Chem., vol. 5, no. 6, pp. 1265–1277, Jun. 2021, doi: 10.1021/acsearthspacechem.1c00107.

[2]        J. R. Tuck, R. J. Tombari, N. Yardeny, and D. E. Olson, “A Modular Approach to Arylazo-1,2,3-triazole Photoswitches,” Org. Lett., vol. 23, no. 11, pp. 4305–4310, Jun. 2021, doi: 10.1021/acs.orglett.1c01230.

[3]        B. D. Fonda, K. M. Jami, N. R. Boulos, and D. T. Murray, “Identification of the Rigid Core for Aged Liquid Droplets of an RNA-Binding Protein Low Complexity Domain,” J. Am. Chem. Soc., vol. 143, no. 17, pp. 6657–6668, May 2021, doi: 10.1021/jacs.1c02424.

[4]        C. R. Stennett, J. C. Fettinger, and P. P. Power, “Low-Coordinate Iron Chalcogenolates and Their Complexes with Diethyl Ether and Ammonia,” Inorg. Chem., vol. 60, no. 9, pp. 6712–6720, May 2021, doi: 10.1021/acs.inorgchem.1c00539.

[5]        C. Dong et al., “Psychedelic-inspired drug discovery using an engineered biosensor,” Cell, vol. 184, no. 10, pp. 2779-2792.e18, May 2021, doi: 10.1016/j.cell.2021.03.043.

[6]        Q. Yu, D. E. Anderson, R. Kaur, A. J. Fisher, and J. B. Ames, “The Crystal Structure of Calmodulin Bound to the Cardiac Ryanodine Receptor (RyR2) at Residues Phe4246–Val4271 Reveals a Fifth Calcium Binding Site,” Biochemistry, vol. 60, no. 14, pp. 1088–1096, Apr. 2021, doi: 10.1021/acs.biochem.1c00152.

[7]        N. D. Loewen, S. Pattanayak, R. Herber, J. C. Fettinger, and L. A. Berben, “Quantification of the Electrostatic Effect on Redox Potential by Positive Charges in a Catalyst Microenvironment,” J. Phys. Chem. Lett., vol. 12, no. 12, pp. 3066–3073, Apr. 2021, doi: 10.1021/acs.jpclett.1c00406.

[8]        G. E. Pereira et al., “Impact of grapevine red blotch disease on primary and secondary metabolites in ‘Cabernet Sauvignon’ grape tissues,” Food Chemistry, vol. 342, p. 128312, Apr. 2021, doi: 10.1016/j.foodchem.2020.128312.

[9]        E. L. Chin et al., “Multi-omics Comparison Reveals Landscape of Citrus limon and Citrus sinensis Response to ‘ Candidatus Liberibacter asiaticus,’” PhytoFrontiersTM, vol. 1, no. 2, pp. 76–84, Apr. 2021, doi: 10.1094/PHYTOFR-09-20-0018-R.

[10]      N. Singh, B. Barnych, K. M. Wagner, D. Wan, C. Morisseau, and B. D. Hammock, “Adrenic Acid-Derived Epoxy Fatty Acids Are Naturally Occurring Lipids and Their Methyl Ester Prodrug Reduces Endoplasmic Reticulum Stress and Inflammatory Pain,” ACS Omega, vol. 6, no. 10, pp. 7165–7174, Mar. 2021, doi: 10.1021/acsomega.1c00241.

[11]       K. Freitag, C. R. Stennett, A. Mansikkamäki, R. A. Fischer, and P. P. Power, “Two-Coordinate, Nonlinear Vanadium(II) and Chromium(II) Complexes of the Silylamide Ligand–N(SiMePh2 )2 : Characterization and Confirmation of Orbitally Quenched Magnetic Moments in Complexes with Sub-d5 Electron Configurations,” Inorg. Chem., vol. 60, no. 6, pp. 4108–4115, Mar. 2021, doi: 10.1021/acs.inorgchem.1c00168.

[12]       C. A. Price et al., “A Pilot Study Comparing the Effects of Consuming 100% Orange Juice or Sucrose-Sweetened Beverage on Risk Factors for Cardiometabolic Disease in Women,” Nutrients, vol. 13, no. 3, p. 760, Feb. 2021, doi: 10.3390/nu13030760.

[13]       J. S. Kirpich et al., “Comparison of the Forward and Reverse Photocycle Dynamics of Two Highly Similar Canonical Red/Green Cyanobacteriochromes Reveals Unexpected Differences,” Biochemistry, vol. 60, no. 4, pp. 274–288, Feb. 2021, doi: 10.1021/acs.biochem.0c00796.

[14]       H. Lee et al., “Milk Fat Globule Membrane as a Modulator of Infant Metabolism and Gut Microbiota: A Formula Supplement Narrowing the Metabolic Differences between Breastfed and Formula‐Fed Infants,” Molecular Nutrition Food Res, vol. 65, no. 3, p. 2000603, Feb. 2021, doi: 10.1002/mnfr.202000603.

[15]       L. P. Cameron et al., “A non-hallucinogenic psychedelic analogue with therapeutic potential,” Nature, vol. 589, no. 7842, pp. 474–479, Jan. 2021, doi: 10.1038/s41586-020-3008-z.

[16]       H. Miao, N. Shevchenko, A. L. Otsuki, and M. Mascal, “Diversification of the Renewable Furanic Platform via 5‐(Chloromethyl)furfural‐Based Carbon Nucleophiles,” ChemSusChem, vol. 14, no. 1, pp. 303–305, Jan. 2021, doi: 10.1002/cssc.202001718.

[17]       X. Lv et al., “Imaging Sequences for Hyperpolarized Solids,” Molecules, vol. 26, no. 1, p. 133, Dec. 2020, doi: 10.3390/molecules26010133.

[18]       Q. Zhu, J. C. Fettinger, P. Vasko, and P. P. Power, “Interactions of a Diplumbyne with Dinuclear Transition Metal Carbonyls to Afford Metalloplumbylenes,” Organometallics, vol. 39, no. 24, pp. 4629–4636, Dec. 2020, doi: 10.1021/acs.organomet.0c00659.

[19]       N. Singh et al., “N -Benzyl-linoleamide, a Constituent of Lepidium meyenii (Maca), Is an Orally Bioavailable Soluble Epoxide Hydrolase Inhibitor That Alleviates Inflammatory Pain,” J. Nat. Prod., vol. 83, no. 12, pp. 3689–3697, Dec. 2020, doi: 10.1021/acs.jnatprod.0c00938.

[20]       A. M. Ehrlich et al., “Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells,” BMC Microbiol, vol. 20, no. 1, p. 357, Dec. 2020, doi: 10.1186/s12866-020-02023-y.

[21]       J. J. Jennings, M. Milic, K. Targos, and A. K. Franz, “NMR quantification of H-bond donating ability for bioactive functional groups and isosteres,” European Journal of Medicinal Chemistry, vol. 207, p. 112693, Dec. 2020, doi: 10.1016/j.ejmech.2020.112693.

[22]       K. L. Mears et al., “Molecular Complexes Featuring Unsupported Dispersion-Enhanced Aluminum–Copper and Gallium–Copper Bonds,” J. Am. Chem. Soc., vol. 142, no. 47, pp. 19874–19878, Nov. 2020, doi: 10.1021/jacs.0c10099.

[23]       Y. Hasegawa et al., “Long-term effects of western diet consumption in male and female mice,” Sci Rep, vol. 10, no. 1, p. 14686, Sep. 2020, doi: 10.1038/s41598-020-71592-9.

[24]       Y. Hasegawa et al., “Optimization of a Method for the Simultaneous Extraction of Polar and Non-Polar Oxylipin Metabolites, DNA, RNA, Small RNA, and Protein from a Single Small Tissue Sample,” MPs, vol. 3, no. 3, p. 61, Aug. 2020, doi: 10.3390/mps3030061.

[25]       C. R. Stennett, T. H. Nguyen, and P. P. Power, “Characterization of the ‘Absent’ Vanadium Oxo V(═O){N(SiMe3 )2 }3 , Imido V(═NSiMe3 ){N(SiMe3 )2 }3 , and Imido-Siloxy V(═NSiMe3 )(OSiMe3 ){N(SiMe3 )2 }2 Complexes Derived from V{N(SiMe3 )2 }3 and Kinetic Study of the Spontaneous Conversion of the Oxo Complex into Its Imido-Siloxy Isomer,” Inorg. Chem., vol. 59, no. 15, pp. 11079–11088, Aug. 2020, doi: 10.1021/acs.inorgchem.0c01572.

[26]       Y. L. Wang, S. Gurses, N. Felvey, and C. X. Kronawitter, “Room temperature and atmospheric pressure aqueous partial oxidation of ethane to oxygenates over AuPd catalysts,” Catal. Sci. Technol., vol. 10, no. 19, pp. 6679–6686, 2020, doi: 10.1039/D0CY01526A.

 

2013 / 2014 Fiscal Year

[1]        S. Park, C. Li, F. Haeseleer, K. PALCZEWSKI, and J. B. Ames, “Structural Insights into Activation of the Retinal L-type Ca2+ Channel (Cav1.4) by Ca2+-binding Protein 4 (CaBP4),” Journal of Biological Chemistry, vol. 289, no. 45, pp. 31262–31273, Nov. 2014.

[2]        Y. Zhang, L. Matt, T. Patriarchi, Z. A. Malik, D. Chowdhury, D. K. Park, A. Renieri, J. B. Ames, and J. W. Hell, “Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release,” The EMBO Journal, Apr. 2014.

[3]        A. M. D. J. B. A. Sunghyuk Lim, “Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1,” Frontiers in Molecular Neuroscience, vol. 7, 2014.

[4]        S. Lim, N. C. Rockwell, S. S. Martin, J. L. Dallas, J. C. Lagarias, and J. B. Ames, “Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2163g3  ,” Photochemical & Photobiological Sciences, vol. 13, no. 6, pp. 951–962, 2014.

[5]        I. V. Peshenko, E. V. Olshevskaya, S. Lim, J. B. Ames, and A. M. Dizhoor, “Identification of Target Binding Site in Photoreceptor Guanylyl Cyclase-activating Protein 1 (GCAP1),” Journal of Biological Chemistry, vol. 289, no. 14, pp. 10140–10154, Apr. 2014.

[6]        S. Lim, N. C. Rockwell, S. S. Martin, J. C. Lagarias, and J. B. Ames, “1H, 15N, and 13C chemical shift assignments of cyanobacteriochrome NpF2164g3 in the photoproduct state,” Biomol NMR Assign, vol. 8, no. 2, pp. 259–262, Jun. 2013.

[7]        S. Park, C. Li, and J. B. Ames, “1H, 15N, and 13C chemical shift assignments of murine calcium-binding protein 4,” Biomol NMR Assign, vol. 8, no. 2, pp. 361–364, Aug. 2013.

[8]        C. Li and J. B. Ames, “1H, 13C, and 15N chemical shift assignments of neuronal calcium sensor protein, hippocalcin,” Biomol NMR Assign, vol. 8, no. 1, pp. 63–66, Dec. 2012.

[9]        S. Lim, I. V. Peshenko, A. M. Dizhoor, and J. B. Ames, “Structural Insights for Activation of Retinal Guanylate Cyclase by GCAP1,” PLoS ONE, vol. 8, no. 11, p. e81822, Nov. 2013.

[10]      W. K. Myers, X. Xu, C. Li, J. O. Lagerstedt, M. S. Budamagunta, J. C. Voss, R. D. Britt, and J. B. Ames, “Double Electron–Electron Resonance Probes Ca 2+-Induced Conformational Changes and Dimerization of Recoverin,” Biochemistry, vol. 52, no. 34, pp. 5800–5808, Aug. 2013.

[11]      C. Li, M. Enomoto, A. M. Rossi, M.-D. Seo, T. Rahman, P. B. Stathopulos, C. W. Taylor, M. Ikura, and J. B. Ames, “CaBP1, a neuronal Ca2+ sensor protein, inhibits inositol trisphosphate receptors by clamping intersubunit interactions,” Proceedings of the National Academy of Sciences, vol. 110, no. 21, pp. 8507–8512, May 2013.

[12]      X. Xu, C. L. Olson, D. M. Engman, and J. B. Ames, “1H, 15N, and 13C chemical shift assignments of the calflagin Tb24 flagellar calcium binding protein of Trypanosoma brucei,” Biomol NMR Assign, vol. 7, no. 1, pp. 9–12, Mar. 2012.

[13]      S. Lim, I. V. Peshenko, A. M. Dizhoor, and J. B. Ames, “Backbone 1H, 13C, and 15N resonance assignments of guanylyl cyclase activating protein-1, GCAP1,” Biomol NMR Assign, vol. 7, no. 1, pp. 39–42, Mar. 2012.

[14]      M. Pinter, T. Harter, M. McCarthy, and M. Augustine, “Towards Using NMR to Screen for Spoiled Tomatoes Stored in 1,000 L, Aseptically Sealed, Metal-Lined Totes,” Sensors, vol. 14, no. 3, pp. 4167–4176, Mar. 2014.

[15]      J. C. Erker and M. P. Augustine, “Analytical approximations to inhomogeneously broadened, radiation damped free precession and echo signals,” Journal of Magnetic Resonance, vol. 238, pp. 106–114, Jan. 2014.

[16]      L. Chang, I. E. Jacobs, M. P. Augustine, and A. J. Moulé, “Correlating dilute solvent interactions to morphology and OPV device performance,” Organic Electronics, vol. 14, no. 10, pp. 2431–2443, Oct. 2013.

[17]      V. S. P. K. Neti, M. R. Cerón, A. Duarte-Ruiz, M. M. Olmstead, A. L. Balch, and L. Echegoyen, “High-yield, regiospecific bis-functionalization of C 70 using a Diels–Alder reaction in molten anthracene  ,” Chem. Commun., vol. 50, no. 73, pp. 10584–10587, 2014.

[18]      F. L. Bowles, M. M. Olmstead, and A. L. Balch, “Preparation and Crystallographic Characterization of C 60{η 1-Ru(CO) 2(η 5-C 5H 5)} 2: A Locally Crowded Organometallic Fullerene Without the Usual η 2-Bonding,” J. Am. Chem. Soc, vol. 136, no. 9, pp. 3338–3341, Mar. 2014.

[19]      K. B. Ghiassi, M. M. Olmstead, and A. L. Balch, “Gadolinium-containing endohedral fullerenes: structures and function as magnetic resonance imaging (MRI) agents,” Dalton Transactions, vol. 43, no. 20, p. 7346, 2014.

[20]      M. Yamada, H. Kurihara, M. Suzuki, J. D. Guo, M. Waelchli, M. M. Olmstead, A. L. Balch, S. Nagase, Y. Maeda, T. Hasegawa, X. Lu, and T. Akasaka, “Sc 2@C 66Revisited: An Endohedral Fullerene with Scandium Ions Nestled within Two Unsaturated Linear Triquinanes,” J. Am. Chem. Soc, vol. 136, no. 21, pp. 7611–7614, May 2014.

[21]      A. L. Svitova, K. B. Ghiassi, C. Schlesier, K. Junghans, Y. Zhang, M. M. Olmstead, A. L. Balch, L. Dunsch, and A. A. Popov, “Endohedral fullerene with μ3-carbido ligand and titanium-carbon double bond stabilized inside a carbon cage,” Nat Comms, vol. 5, Apr. 2014.

[22]      M. Izquierdo, M. R. Cerón, M. M. Olmstead, A. L. Balch, and L. Echegoyen, “[5,6]-Open Methanofullerene Derivatives of I h-C 80,” Angew. Chem., vol. 125, no. 45, pp. 12042–12046, Sep. 2013.

[23]      J. Zhang, F. L. Bowles, D. W. Bearden, W. K. Ray, T. Fuhrer, Y. Ye, C. Dixon, K. Harich, R. F. Helm, M. M. Olmstead, A. L. Balch, and H. C. Dorn, “A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism,” Nature Chem, vol. 5, no. 10, pp. 880–885, Sep. 2013.

[24]      F. L. Bowles, B. Q. Mercado, K. B. Ghiassi, S. Y. Chen, M. M. Olmstead, H. Yang, Z. Liu, and A. L. Balch, “Ordered Structures from Crystalline Carbon Disulfide Solvates of the Nano-Tubular Fullerenes D5h(1)-C 90and D5h-C 70,” Crystal Growth & Design, vol. 13, no. 10, pp. 4591–4598, Oct. 2013.

[25]      J. G. Harrison, Y. B. Zheng, P. A. Beal, and D. J. Tantillo, “Computational Approaches to Predicting the Impact of Novel Bases on RNA Structure and Stability,” ACS Chem. Biol., vol. 8, no. 11, pp. 2354–2359, Nov. 2013.

[26]      K. Onizuka, J. G. Harrison, A. A. Ball-Jones, J. M. Ibarra-Soza, Y. Zheng, D. Ly, W. Lam, S. Mac, D. J. Tantillo, and P. A. Beal, “Short Interfering RNA Guide Strand Modifiers from Computational Screening,” J. Am. Chem. Soc, vol. 135, no. 45, pp. 17069–17077, Nov. 2013.

[27]      T. W. Myers and L. A. Berben, “Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H 2 and CO 2  ,” Chemical Science, vol. 5, no. 7, pp. 2771–2777, 2014.

[28]      J. P. Krogman, M. W. Bezpalko, and L. A. Berben, “One-Electron Oxidation Chemistry and Subsequent Reactivity of Diiron Imido Complexes - Inorganic Chemistry (ACS Publications),” Inorganic …, 2014.

[29]      T. W. Myers and L. A. Berben, “Aluminum–Ligand Cooperative N–H Bond Activation and an Example of Dehydrogenative Coupling,” J. Am. Chem. Soc, vol. 135, no. 27, pp. 9988–9990, Jul. 2013.

[30]      T. W. Myers and L. A. Berben, “Aluminum–Amido-Mediated Heterolytic Addition of Water Affords an Alumoxane,” Organometallics, vol. 32, no. 22, pp. 6647–6649, Nov. 2013.

[31]      L. Li, Y. Liu, Y. Wan, Y. Li, X. Chen, W. Zhao, and P. G. Wang, “Efficient Enzymatic Synthesis of Guanosine 5′-Diphosphate-Sugars and Derivatives,” Organic Letters, vol. 15, no. 21, pp. 5528–5530, Nov. 2013.

[32]      J. Hwang, H. Yu, H. Malekan, G. Sugiarto, Y. Li, J. Qu, Van Nguyen, D. Wu, and X. Chen, “Highly efficient one-pot multienzyme (OPME) synthesis of glycans with fluorous-tag assisted purification  ,” Chem. Commun., vol. 50, no. 24, pp. 3159–3162, 2014.

[33]      H. Yu, K. Lau, V. Thon, C. A. Autran, E. Jantscher-Krenn, M. Xue, Y. Li, G. Sugiarto, J. Qu, S. Mu, L. Ding, L. Bode, and X. Chen, “Synthetic Disialyl Hexasaccharides Protect Neonatal Rats from Necrotizing Enterocolitis,” Angew. Chem. Int. Ed., vol. 53, no. 26, pp. 6687–6691, May 2014.

[34]      M. M. Muthana, C. W. Hsiao, H. Yu, and X. Chen, “Chemoenzymatic synthesis of sialosides containing C7-modified sialic acids and their application in sialidase substrate specificity studies,” Carbohydrate …, 2014.

[35]      N. T. Tran, S. O. Wilson, and A. K. Franz, “Supramolecular hydrogen-bonding assembly of silanediols with bifunctional heterocycles  ,” Chem. Commun., vol. 50, no. 28, pp. 3738–3740, 2014.

[36]      B. H. Shupe, E. E. Allen, J. P. MacDonald, S. O. Wilson, and A. K. Franz, “Synthesis of Spirocarbamate Oxindoles via Intramolecular Trapping of a β-Silyl Carbocation by an N-Boc Group,” Organic Letters, vol. 15, no. 13, pp. 3218–3221, Jul. 2013.

[37]      I. Van Bogaert, G. Zhang, J. Yang, J. Y. Liu, Y. Ye, W. Soetaert, and B. D. Hammock, “Preparation of 20-HETE using multifunctional enzyme type 2-negative Starmerella bombicola,” The Journal of Lipid Research, vol. 54, no. 11, pp. 3215–3219, Oct. 2013.

[38]      T. Chen, K. Takrouri, S. Hee-Hwang, S. Rana, R. Yefidoff-Freedman, J. Halperin, A. Natarajan, C. Morisseau, B. Hammock, M. Chorev, and B. H. Aktas, “Explorations of Substituted Urea Functionality for the Discovery of New Activators of the Heme-Regulated Inhibitor Kinase,” J. Med. Chem., vol. 56, no. 23, pp. 9457–9470, Dec. 2013.

[39]      M. L. Nording, J. Yang, K. Georgi, C. H. Karbowski, J. B. German, R. H. Weiss, R. J. Hogg, J. Trygg, B. D. Hammock, and A. M. Zivkovic, “Individual Variation in Lipidomic Profiles of Healthy Subjects in Response to Omega-3 Fatty Acids,” PLoS ONE, vol. 8, no. 10, p. e76575, Oct. 2013.

[40]      T. Kálai, R. Altman, I. Maezawa, M. Balog, C. Morisseau, J. Petrlova, B. D. Hammock, L.-W. Jin, J. R. Trudell, J. C. Voss, and K. Hideg, “Synthesis and functional survey of new Tacrine analogs modified with nitroxides or their precursors,” European Journal of Medicinal Chemistry, vol. 77, pp. 343–350, Apr. 2014.

[41]      T. R. Harris, G. M. Butov, and B. D. Hammock, “Symmetric adamantyl-diureas as soluble epoxide hydrolase inhibitors,” Bioorganic & medicinal …, 2014.

[42]      I.-H. Kim, I.-H. Lee, H. Nishiwaki, B. D. Hammock, and K. Nishi, “Structure–activity relationships of substituted oxyoxalamides as inhibitors of the human soluble epoxide hydrolase,” Bioorg. Med. Chem., vol. 22, no. 3, pp. 1163–1175, Feb. 2014.

[43]      A. Durmus, G. Gunbas, S. C. Farmer, M. M. Olmstead, M. Mascal, B. Legese, J.-Y. Cho, R. L. Beingessner, T. Yamazaki, and H. Fenniri, “Synthesis of N-substituted Pyrido[4,3- d]pyrimidines for the Large-Scale Production of Self-Assembled Rosettes and Nanotubes,” J. Org. Chem., vol. 78, no. 22, pp. 11421–11426, Nov. 2013.

[44]      M. Carrasco, I. Mendoza, M. Faust, J. López-Serrano, R. Peloso, A. Rodríguez, E. Álvarez, C. Maya, P. P. Power, and E. Carmona, “Terphenyl Complexes of Molybdenum and Tungsten with Quadruple Metal–Metal Bonds and Bridging Carboxylate Ligands,” J. Am. Chem. Soc, vol. 136, no. 25, pp. 9173–9180, Jun. 2014.

[45]      F. Lips, J. D. Queen, J. C. Fettinger, and P. P. Power, “Unusual coordination of tetrylenes to molybdenum carbonyl fragments  ,” Chem. Commun., vol. 50, no. 42, pp. 5561–5564, 2014.

[46]      P. Zhao, Z. Brown, J. C. Fettinger, F. Grandjean, G. J. Long, and P. P. Power, “Synthesis and Structural Characterization of a Dimeric Cobalt(I) Homoleptic Alkyl and an Iron(II) Alkyl Halide Complex,” Organometallics, vol. 33, no. 8, pp. 1917–1920, Apr. 2014.

[47]      J. W. Dube, C. M. E. Graham, C. L. B. Macdonald, Z. D. Brown, P. P. Power, and P. J. Ragogna, “Reversible, Photoinduced Activation of P 4by Low-Coordinate Main Group Compounds,” Chem. Eur. J., vol. 20, no. 22, pp. 6739–6744, Mar. 2014.

[48]      J. N. Boynton, J. D. Guo, F. Grandjean, J. C. Fettinger, S. Nagase, G. J. Long, and P. P. Power, “Synthesis and Characterization of the Titanium Bisamide Ti{N(H)Ar iPr 6} 2(Ar iPr 6= C 6H 3-2,6-(C 6H 2-2,4,6- iPr 3) 2and Its TiCl{N(H)Ar iPr 6} 2Precursor: Ti(II) → Ti(IV) Cyclization,” Inorganic Chemistry, vol. 52, no. 24, pp. 14216–14223, Dec. 2013.

[49]      A. M. Bryan, G. J. Long, F. Grandjean, and P. P. Power, “Synthesis, Spectroscopic Characterization, and Determination of the Solution Association Energy of the Dimer [Co{N(SiMe 3) 2} 2] 2: Magnetic Studies of Low-Coordinate Co(II) Silylamides [Co{N(SiMe 3) 2} 2L] (L = PMe 3, Pyridine, and THF) and Related Species That Reveal Evidence of Very Large Zero-Field Splittings,” Inorganic Chemistry, vol. 52, no. 20, pp. 12152–12160, Oct. 2013.

[50]      J.-A. Dolyniuk, D. C. Kaseman, S. Sen, J. Zhao, F. E. Osterloh, and K. Kovnir, “mP-BaP 3: A New Phase from an Old Binary System,” Chem. Eur. J., vol. 20, no. 34, pp. 10829–10837, May 2014.

[51]      T. Endo, M. Imanari, H. Seki, S. Sen, and K. Nishikawa, “Fast cation dynamics in the crystalline state of an imidazolium-based room temperature ionic liquid due to the presence of a tiny amount of H2O,” Solid State Ionics, vol. 259, pp. 41–45, Jun. 2014.

[52]      S. Sen, T. Edwards, S. K. Kim, and S. Kim, “Investigation of the Potential Energy Landscape for Vacancy Dynamics in Sc-Doped CeO 2,” Chem. Mater., vol. 26, no. 5, pp. 1918–1924, Mar. 2014.

[53]      T. Endo and S. Sen, “Ionic Dynamics in [C 4mim]NTf 2in the Glassy and Liquid States: Results from 13C and 1H NMR Spectroscopy,” J. Phys. Chem. B, p. 141211150747009, Dec. 2014.

[54]      S. Sen, “Spectroscopic Observation of Fractal Packing of Oxygen in Variably Modified Glassy Tetrahedral Networks,” J. Phys. Chem. Lett., vol. 5, no. 3, pp. 555–559, Feb. 2014.

[55]      D. C. Kaseman, R. E. Youngman, B. G. Aitken, and S. Sen, “Structure and bonding characteristics of chalcogenide glasses in the system BaSeGa2Se3GeSe2,” Journal of Non- …, 2013.

[56]      G. Mera, I. Menapace, S. Widgeon, S. Sen, and R. Riedel, “Photoluminescence of as-synthesized and heat-treated phenyl-containing polysilylcarbodiimides: role of crosslinking and free carbon formation in polymer-derived ceramics,” Appl. Organometal. Chem., vol. 27, no. 11, pp. 630–638, Oct. 2013.

[57]      J. Fulmer, O. I. Lebedev, V. V. Roddatis, D. C. Kaseman, S. Sen, J.-A. Dolyniuk, K. Lee, A. V. Olenev, and K. Kovnir, “Clathrate Ba 8Au 16P 30: The ‘Gold Standard’ for Lattice Thermal Conductivity,” J. Am. Chem. Soc, vol. 135, no. 33, pp. 12313–12323, Aug. 2013.

[58]      J. T. Moore, N. V. Hanhan, M. E. Mahoney, S. P. Cramer, and J. T. Shaw, “Enantioselective Synthesis of Isotopically Labeled Homocitric Acid Lactone,” Organic Letters, vol. 15, no. 22, pp. 5615–5617, Nov. 2013.

[59]      N. A. Sorto, M. J. Di Maso, M. A. Muñoz, R. J. Dougherty, J. C. Fettinger, and J. T. Shaw, “Diastereoselective Synthesis of γ- and δ-Lactams from Imines and Sulfone-Substituted Anhydrides,” J. Org. Chem., vol. 79, no. 6, pp. 2601–2610, Mar. 2014.

[60]      J. T. Smilowitz, A. O'Sullivan, D. Barile, J. B. German, B. Lonnerdal, and C. M. Slupsky, “The Human Milk Metabolome Reveals Diverse Oligosaccharide Profiles,” Journal of Nutrition, vol. 143, no. 11, pp. 1709–1718, Oct. 2013.

[61]      X. He, D. O. Mishchuk, J. Shah, B. C. Weimer, and C. M. Slupsky, “Cross-talk between E. coli strains and a human colorectal adenocarcinoma-derived cell line,” Sci. Rep., vol. 3, pp. –, Jan. 2000.

[62]      V. K. Tso, B. C. Sydora, R. R. Foshaug, T. A. Churchill, J. Doyle, C. M. Slupsky, and R. N. Fedorak, “Metabolomic Profiles Are Gender, Disease and Time Specific in the Interleukin-10 Gene-Deficient Mouse Model of Inflammatory Bowel Disease,” PLoS ONE, vol. 8, no. 7, p. e67654, Jul. 2013.

[63]      E. L. Chin, D. O. Mishchuk, A. P. Breksa, and C. M. Slupsky, “Metabolite Signature of CandidatusLiberibacter asiaticus Infection in Two Citrus Varieties,” J. Agric. Food Chem., vol. 62, no. 28, pp. 6585–6591, Jul. 2014.